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Introduction	
This	methodological	note	presents	the	data	sources,	logic,	and	assumptions	upon	which	our	energy	
sector	modeling	is	based.	It	is	important	to	emphasize	that	the	regional	scenarios	based	on	this	
modeling	are	not	explicit	forecasts.	Rather,	the	purpose	of	these	scenarios	is	to	map	the	boundaries	
within	which	actual	outcomes	are	likely	to	fall,	so	that	others	can	use	our	findings	to	make	more	precise	
forecasts	for	their	geographic	region	based	on	their	own	policy	and	investment	choices.	

The	overarching	conclusion	that	we	have	reached	based	on	this	research	is	that	it	is	far	more	feasible	for	
most	of	the	populated	regions	of	the	globe	to	meet	most	or	all	of	their	electricity	needs	cleanly	with	a	
combination	of	solar	PV,	onshore	wind	power,	and	batteries	(SWB)	than	is	widely	reported	in	other	
conventional	analyses	or	believed	by	policymakers,	investors,	and	the	public.	This	is	a	crucially	important	
finding	that	changes	the	global	energy	conversation	looking	ahead	to	the	2020s	and	into	the	2030s.	

Our	approach	differs	from	most	other	analyses	in	that	it	provides	estimates	for	both	the	total	capital	
cost	of	electricity	assets	as	well	as	the	system	electricity	cost	(SEC)	for	optimal	mixes	of	solar	PV,	wind	
power,	and	battery	capacity	at	the	scale	of	the	entire	system,	rather	than	only	levelized	costs	at	the	
scale	of	individual	facilities.	These	two	metrics	together	allow	policymakers,	investors,	and	other	
decisionmakers	to	compare	the	cost	of	energy	technologies	in	terms	of	both	initial	investment	and	long-
term	expenditure.	Our	reason	for	adopting	this	macro	level	of	analysis	instead	of	a	micro	level	one	is	to	
fill	a	notable	knowledge	gap	in	the	existing	electricity	sector	analysis	literature	and	thereby	aid	
decisionmakers	in	planning	for	a	clean	energy	future	based	on	a	clear	understanding	that	rapid	
disruption	of	the	electricity	sector	is	possible	by	2030.	

Data	
We	use	hourly	load	and	generation	data	as	inputs	to	our	capacity	requirements	model.	These	data	are	
reported	by	the	electrical	grid	system	operators:	ISO	New	England	for	New	England,	ERCOT	for	Texas,	
and	California	ISO	for	California.1–3	Note	that	these	“ground	truth”	data	from	the	system	operators	
themselves	differ	somewhat	from	numbers	reported	at	the	state	level	by	government	agencies	because	
the	system	operator	service	area	is	less	than	100%	of	each	state,	and	so	we	scale	the	data	accordingly.	
The	time	period	of	our	analysis	is	two	years,	running	from	July	1	2017	through	June	30	2019.	This	period	
was	chosen	because	it	is	the	most	recent	and	therefore	the	most	reliable	time	during	which	the	same	
hourly	data	were	available	for	all	three	regions.	



Capacity	Requirements	
We	use	a	systems	dynamics	approach	to	determine	the	amount	of	solar	PV,	wind,	and	battery	energy	
storage	capacity	that	is	required	to	meet	a	given	percentage	of	electricity	demand	in	any	geographic	
region.	Explicitly	modeling	the	generation,	storage,	and	consumption	of	electricity	as	stocks	and	flows	
within	the	ISEE	Systems	Stella	Professional	software	environment	allows	us	to	construct	a	meaningful	
simulation	of	the	region’s	system	of	electricity	supply	and	demand	dynamics	(Figure	1).	

Figure	1:	New	England	Electricity	Supply	and	Demand	–	Systems	Dynamics	Model		

	

Source:	RethinkX,	2020.	

The	model	takes	as	inputs	the	region’s	historical	hourly	electricity	demand	(in	megawatts),	hourly	solar	
PV	power	generation	(in	megawatts),	and	hourly	wind	power	generation	(in	megawatts).	Adjustments	
for	solar	PV	and	wind	power	capacity	additions	are	made	in	equal	increments	at	each	hour,	based	on	
annual	reported	capacity	changes.	We	then	normalize	the	capacity-adjusted	solar	PV	and	wind	power	
generation	data	as	a	percentage	of	the	maximum	generation	output	in	each	period	of	the	source	data	
(typically	one	calendar	year).	The	resulting	normalized	range	from	0%	to	100%	provides	accurate	proxies	
for	the	natural	variability	profile,	and	thus	the	availability,	of	sunshine	and	wind	resources.	

In	contrast	to	other	approaches	that	attempt	to	simulate	resource	availability	via	geophysical	modeling,	
our	use	of	existing	generation	data	as	a	proxy	for	natural	resource	availability	obviates	the	need	to	



model	a	prohibitively	large	number	of	endogenous	variables	in	the	system,	and	at	the	same	time	it	also	
reduces	error	from	other	exogenous/unknown	variables.	

Once	normalized,	the	hourly	solar	PV	and	wind	power	generation	values	are	then	multiplied	by	user-
defined	parameters	(Solar	Capacity	and	Wind	Capacity)	to	scale	the	simulated	quantity	of	solar	and	wind	
electricity	generation	(SW	Supply)	for	every	hour	of	the	year	as	needed.	We	assume	that	electricity	
output	scales	linearly	with	installed	capacity.	

Alongside	solar	PV	and	wind	power	generation	is	a	quantity	of	conventional	reserve	capacity	comprised	
of	an	unspecified	mix	of	other	energy	sources	(e.g.	natural	gas,	hydropower,	nuclear	power,	and/or	
interregional	electricity	imports).	In	our	Limit	Case	scenarios	this	quantity	is	set	to	zero,	but	this	quantity	
remains	a	user-defined	parameter	(Reserve	Capacity)	for	use	in	modeling	other	scenarios	in	the	future`.	
The	optimal	use	of	conventional	reserve	capacity	is	to	proactively	charge	the	batteries	whenever	
possible	rather	than	to	reactively	enter	service	when	a	supply	shortage	appears	imminent,	and	so	this	is	
the	behavior	that	we	model.	However,	it	should	be	noted	that	actual	reserve	capacity	utilization	
patterns	will	differ	substantially	based	on	region-specific	conditions,	policies,	and	choices.		

The	Supply	Demand	Gap	element	of	the	model	then	tracks	the	difference	between	electricity	demand	
and	solar	PV,	wind,	and	(if	applicable)	conventional	reserve	power	supply	at	each	successive	hour.	When	
this	difference	is	negative,	a	corresponding	quantity	of	electricity	is	discharged	from	the	battery	in	order	
to	ensure	that	demand	is	met.	When	this	difference	is	positive,	a	corresponding	quantity	of	electricity	
(subject	to	roundtrip	efficiency	losses	controlled	by	the	user-defined	Battery	Efficiency	parameter)	
charges	the	battery	for	later	use.	We	assume	that	the	battery	energy	storage	capacity	will	be	comprised	
of	lithium-ion	chemistries,	and	because	this	technology	has	a	very	high	charge/discharge	rate	(i.e.	power	
input/output	capability)	relative	to	energy	storage	capacity,	the	model	assumes	that	the	battery	stock	is	
always	capable	of	meeting	any	power	output	or	charging	input	level	required.	(Battery	charge	and	
discharge	power	ratings	are	denoted	as	c-rates,	which	are	a	ratio	of	power	output	to	energy	storage	
capacity.	A	high-performance	100kWh	lithium-ion	electric	vehicle	battery	can	discharge	at	a	temporary	
peak	of	5C,	or	500KW	power	output.	A	stationary	100	kilowatt-hour	lithium-ion	battery	might	sustain	
2C,	or	200	kilowatts	power	output.	In	our	Limit	Scenario,	California	would	have	nearly	1,200	gigawatt-
hours	of	battery	energy	storage	capacity	installed,	which	at	2C	would	allow	for	a	sustained	discharge	
power	output	of	2,400	gigawatts.	This	is	48	times	higher	than	the	highest-ever	peak	electricity	demand	
recorded	by	CAISO	of	50.1	gigawatts).	

The	simulation	starts	at	midnight	on	July	1	(i.e.	mid-summer	in	the	northern	hemisphere)	with	the	
batteries	in	a	fully-charged	state.	Note	that	this	assumption	is	crucial,	because	it	is	not	realistic	to	
assume	the	batteries	will	have	a	full	charge	during	other	seasons	of	the	year.	As	the	simulation	proceeds	
into	the	winter	season,	overall	discharging	exceeds	overall	charging	for	extended	periods,	resulting	in	a	
progressive	drawdown	of	energy	in	the	batteries	during	these	periods.	Then,	as	the	simulation	
progresses	into	the	spring	and	summer	season,	the	situation	reverses	and	overall	charging	begins	to	
exceed	overall	discharging,	resulting	and	the	batteries	progressively	building	up	stored	energy	until	they	
once	again	reach	a	state	of	full	charge.	Note,	however,	that	there	is	considerable	weather-induced	
stochasticity	on	shorter	time	intervals	(days	to	weeks)	around	these	general	patterns	of	system	
behavior.	The	total	required	battery	capacity	to	prevent	an	electricity	supply	shortfall	is	thus	equal	to	
the	largest	drawdown	experienced	during	the	entire	simulation,	which	will	typically	occur	in	late	winter.	
Note	that	by	disallowing	any	electricity	supply	shortfall,	our	model’s	conditions	are	effectively	



equivalent	to	requiring	100%	generation	uptime	(although	supply	shortages	will	still	of	course	occur	in	
any	centralized	electricity	system	due	to	inevitable	localized	faults	in	transmission	and	distribution	
infrastructure).	

The	culmination	of	our	systems	dynamics	modeling	is	that	for	each	geographic	region	we	can	identify	
the	electricity	supply	capacity	requirements	for	different	combinations	of	installed	SWB.	Our	analysis	
identifies	these	combinations	at	1-gigawatt	solar	PV	capacity,	1-gigawatt	wind	capacity,	and	1-gigawatt-
hour	battery	capacity	intervals.	Given	the	uncertainties	inherent	in	both	the	source	data	and	the	
modeling	itself,	any	reported	precision	below	the	gigawatt	scale	would	be	spurious.	

The	Clean	Energy	U-Curve	
A	key	insight	that	emerges	from	our	analysis	is	that	energy	generation	and	storage	capacity	can	be	
operationally	equivalent	and	thus	traded	off	against	one	another	based	on	capital	cost	according	to	a	
convex	(u-shaped)	cost	function,	as	shown	in	Figure	2.	We	term	this	insight	the	Clean	Energy	U-curve.		

Figure	2:	The	Clean	Energy	U-Curve	

	

Source:	RethinkX,	2020.	

Generation	capacity	is	defined	as	a	percentage	or	multiplier	of	peak	electricity	demand,	so	that	where	a	
100%	or	1x	capacity	system	could	meet	all	electricity	demand	at	its	highest	hour	in	the	year	(typically	
occurring	sometime	in	mid-summer),	a	200%	or	2x	capacity	system	would	have	twice	that	amount	of	
solar	PV	and/or	wind	power	capacity	installed.	



This	convex	relationship	between	generation	and	storage	capacity	was	not	initially	obvious	when	the	
costs	of	SWB	were	high	relative	to	conventional	electricity	generating	technologies	just	a	few	years	ago.	
The	predominant	reason	why	is	that	older	models	of	generation	and	storage	capacity	mixes	were	
optimized	for	minimal	energy	use	based	on	the	assumption	this	would	indirectly	correlate	to	cost	
optimization.	In	reality,	direct	optimization	on	the	basis	of	future	costs	yields	dramatically	different	
results.	As	costs	of	SWB	have	passed	parity	with	coal,	natural	gas,	and	nuclear	power	and	are	on	track	to	
become	far	cheaper	still	over	the	course	of	the	2020s,	the	logic	of	trading	off	generation	for	storage	
capacity	has	become	increasingly	clear.4–6	

Clean	Energy	Super	Power	
The	lowest-cost	mix	of	energy	generation	and	storage	capacity	for	100%	SWB	systems	will	have	between	
3x	and	5x	more	generating	capacity	than	today’s	grid.	As	a	result,	a	surplus	of	clean	energy	from	solar	PV	
and	wind	power	generation	will	be	available	on	the	majority	of	days	of	the	year	at	close	to	zero	marginal	
cost.		

We	call	this	surplus	of	electricity	clean	energy	super	power,	or	just	super	power	for	short.		

	

Super	power	will	create	extraordinary	opportunities	for	entirely	new	business	models	in	heating,	water	
purification,	recycling	and	waste-processing,	metal	processing/smelting,	heavy	industry,	cryptocurrency	
mining,	manufacturing,	and	carbon	dioxide	removal	–	to	name	just	a	few	examples	(see	our	other	
energy	publications	for	details).		

Up	until	now,	generation	“overcapacity”	has	been	mischaracterized	by	incumbents	as	a	problem	to	be	
avoided	because	surplus	output	from	solar	PV	and	wind	installations	must	be	curtailed	in	order	to	avoid	
destabilizing	the	grid	with	excess	supply,	as	well	as	to	spare	conventional	powerplants	from	disruption.7–
9	To	the	contrary,	generating	a	large	surplus	of	clean	energy	at	near-zero	marginal	cost	is	not	a	bug	but	a	
feature	of	future	clean	100%	SWB	systems.	Moreover,	flushing	huge	quantities	of	clean	energy	that	is	
essentially	free	down	the	drain	is	not	rational,	and	as	with	previous	disruptions	this	is	a	clear	indication	
that	the	existing	energy	system	cannot	accommodate	new	SWB	technologies	and	is	poised	to	be	
disrupted.	



Technology	Adoption	
Solar	PV	
It	is	clear	that	the	adoption	trajectory	of	global	solar	PV	capacity	has	been	exponential,	but	the	
consistency	of	this	growth	is	more	readily	apparent	when	the	same	data	are	presented	on	a	logarithmic	
plot	(Figure	3).	

Figure	3:	Global	Solar	PV	Installed	Capacity	(gigawatts)	–	linear	and	logarithmic	plots	

	

	

Source:	BP	Statistical	Review	of	World	Energy,	2019.10		

Solar	PV	has	the	potential	to	be	both	less	expensive	than	wind	power	(both	onshore	and	offshore)	and	
to	be	deployed	across	a	wider	variety	of	geographic	areas.	As	a	result,	solar	PV	is	growing	more	quickly	
and	is	on	course	to	overtake	wind	in	total	global	installed	capacity	before	2025.		



Wind	Power	
Similarly,	the	adoption	trajectory	of	global	wind	power	capacity	has	also	been	exponential	(although	at	a	
more	modest	rate),	and	again	the	consistency	of	this	growth	is	more	readily	apparent	when	the	same	
data	are	presented	on	a	logarithmic	plot	(Figure	4).	

Figure	4:	Global	Wind	Power	Installed	Capacity	(gigawatts)	–	linear	and	logarithmic	plots	

	

	

Source:	BP	Statistical	Review	of	World	Energy,	2019.10	

Battery	Energy	Storage	
Lithium-ion	battery	energy	storage	is	a	newer	technology	than	either	solar	PV	or	wind	power,	and	
reliable	global	production,	adoption,	and	cost	data	for	its	earliest	years	are	not	available.	Nevertheless,	
we	see	a	similar	trend	in	energy	storage	technology	in	general	and	lithium-ion	battery	technologies	in	
particular	(Figure	5).	Note	that	these	data	are	based	on	global	energy	storage	numbers	excluding	
pumped	hydro,	and	are	adjusted	based	on	the	fraction	comprised	of	lithium-ion	chemistries	each	year.	



Figure	5:	Global	Lithium	Battery	Energy	Storage	Capacity	(gigawatt-hours)	–	linear	and	logarithmic	plots	

	

	

Source:	Wood	Mackenzie	2019;	IEA	2020;	RethinkX	2020.	

History	shows	that	exponential	adoption	growth	tends	to	continue	until	the	new	technology	reaches	
between	60%	and	75%	of	its	ultimate	maximum	market	share,	at	which	point	the	adoption	trajectory	
inflects	into	an	s-curve.	At	current	rates,	and	accounting	for	an	increase	in	total	global	electricity	
demand	(because	of	continued	economic	development,	electrification	of	road	transportation,	and	
electrification	of	heating),	we	are	unlikely	to	see	the	inflection	of	solar	PV,	wind	power,	or	battery	
storage	into	their	final	adoption	s-curves	prior	to	2030.		

Costs	
The	continued	exponential	adoption	of	solar	PV,	wind	power,	and	battery	energy	storage	worldwide	
throughout	the	2020s	–	and	corresponding	growth	of	their	respective	markets	–	will	ensure	that	the	
trend	of	cost	improvement	for	each	of	these	technologies	continues	from	now	until	at	least	2030.	The	
combination	of	compelling	economics	and	public	pressure	to	address	resilience,	pollution	and	climate	
change	continues	to	expand	the	scope	of	policy	commitments	to	these	technologies	worldwide,	with	



both	public	and	private	investment	scaling	accordingly.	Our	methodology	therefore	takes	the	existing	
cost	trend	for	each	technology	since	2010	and	makes	a	conservative	extrapolation	forward	through	the	
2020s	(see	below).	

Note	that	our	analysis	emphasizes	the	distinction	between	capital	costs	for	generating	and	storage	
capacity	($/gigawatt	and	$/gigawatt-hour	respectively)	versus	the	system	electricity	cost	($/kilowatt-
hour),	and	that	our	cost	analysis	differs	from	conventional	analyses	that	utilize	the	obsolete,	flawed,	and	
misleading	metric	of	levelized	cost	of	electricity	(LCOE).	(See	below.)	

Capital	costs	for	generation	and	storage	capacity	(used	synonymously	with	the	more	general	financial	
term	capital	expenditures	or	capex,	and	sometimes	with	the	term	upfront	cost)	are	a	familiar	concept	
that	refers	to	the	funds	required	to	install	a	given	quantity	of	solar	PV,	wind,	or	battery	capacity	(here	
measured	in	gigawatts)	respectively.	

System	electricity	cost	(SEC)	is	calculated	by	averaging	all	costs	(i.e.	both	capital	expenditures	and	
operating	expenditures)	incurred	over	the	entire	financial	lifetime	the	system’s	generation	and	storage	
assets	(typically	20	years)	across	all	units	of	electricity	(here	measured	in	kilowatt-hours)	sold	during	
that	same	period.		

LCOE	–	A	Misleading	and	Obsolete	Cost	Metric	
The	standard	conventional	cost	metric	of	levelized	cost	of	energy/electricity	(LCOE)	applies	only	at	the	
level	of	individual	power	plants,	and	not	at	the	level	of	the	system	as	a	whole.	In	the	past,	LCOE	was	a	
valid	metric	for	comparing	electricity	generation	costs	on	a	per-kilowatt-hour	basis	when	the	electric	
power	sector’s	technology	mix	was	relatively	constant,	but	it	is	now	a	fatally	flawed	and	obsolete	
measure	that	can	no	longer	be	used	to	make	meaningful	cost	comparisons	between	electricity	
generation	technologies	(see	our	“Every	Conventional	Plant	is	a	Peaker”	report	for	details).	

Solar	PV	Capital	Cost	History	and	Projections	
The	capital	cost	of	building	solar	PV	capacity	has	declined	dramatically	over	the	last	several	decades.	
These	cost	improvements	have	been	and	will	continue	to	be	driven	by	worldwide	expansion	of	supply	
and	demand.	Our	assumptions	about	future	cost	improvements	are	therefore	based	upon	the	outlook	
for	continued	global	adoption	of	solar	PV.	

For	several	decades	up	until	2012,	the	majority	of	the	cost	of	solar	PV	capacity	was	the	photovoltaic	
modules	themselves.14	As	the	scale	of	module	production	has	increased	since	1980,	the	cost	of	modules	
on	a	per-watt	basis	has	declined	at	an	average	learning	rate	of	24%	in	accordance	with	an	expected	
technology	experience	curve,	shown	on	a	logarithmic	plot	in	Figure	6	below.	This	means	that	for	every	
doubling	of	cumulative	quantity	of	photovoltaic	modules	produced,	the	cost	per-watt	has	declined	by	
roughly	24%.	(A	learning	rate	of	24%	is	very	steep	compared	to	most	other	manufacturing	industries).	



Figure	6:	Solar	PV	Experience	Curve	(learning	rate	=	24.0%)	

	

Source:	Fraunhofer	ISE,	2020.	

Since	2012,	other	component	costs	such	as	inverters,	mounting	hardware,	installation,	and	permitting	
soft	costs	have	together	come	to	comprise	the	majority	of	solar	PV	capacity	capital	costs.	Nevertheless,	
each	of	these	component	costs	is	also	continuing	to	decline	as	the	industry	scales	up,	and	thus	the	
overarching	trend	in	total	capital	cost	per	gigawatt	of	installed	capacity	in	the	United	States	has	been	
one	of	steady	improvement	at	an	average	rate	of	16.1%	each	year	over	the	last	decade.14,15	Our	analysis	
conservatively	assumes	that	solar	PV	capacity	costs	will	continue	to	decline	throughout	the	2020s	at	an	
average	annual	rate	of	12%	(Figure	7).	



Figure	7:	Solar	PV	Capacity	Cost	(2019	USD	per	Kilowatt)	–	Logarithmic	Plot	

	

Source:	NREL,	2018.	RethinkX	projections	2019-2030.	

Note	that	the	average	capacity	cost	of	solar	PV	on	a	per-kilowatt	basis	reached	parity	with	onshore	wind	
power	in	2016.	Solar	PV	has	become	substantially	cheaper	in	the	years	since,	and	it	will	continue	to	
extend	its	cost	lead	over	both	wind	power	and	all	other	electricity	generation	technologies	over	the	
course	of	the	2020s.	

Onshore	Wind	Capacity	Cost	History	and	Projections	
The	learning	rate	for	wind	power,	both	onshore	and	offshore,	has	been	less	consistent	and	less	
precipitous	than	that	of	solar	PV	technology	over	the	last	40	years.	Nevertheless,	the	cost	of	onshore	
wind	power	capacity	in	the	United	States	has	declined	quite	steadily	at	an	average	rate	of	6.2%	each	
year	over	the	last	decade	and	is	likely	to	continue	to	do	so	over	the	next	decade.16	Our	analysis	
conservatively	assumes	that	onshore	wind	capacity	costs	will	continue	to	decline	over	the	course	of	the	
2020s	at	an	average	annual	rate	of	5.5%	(Figure	8).	
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Figure	8:	Onshore	Wind	Capacity	Cost	(2019	USD	per	Kilowatt)	–	Logarithmic	Plot	

	

Source:	Lawrence	Berkeley	National	Laboratory,	2018.	RethinkX	projections	2019-2030.	

Battery	Energy	Storage	Capacity	Cost	History	and	Projections	
The	learning	rate	for	lithium-ion	battery	technology	has	been	very	impressive,	with	costs	of	individual	
cells	falling	by	an	average	of	17%	with	each	doubling	of	cumulative	capacity	produced.17	Unfortunately,	
although	lithium-ion	batteries	first	reached	the	market	in	1991,	reliable	global	cost	and	production	data	
for	large	scale	battery	packs	(i.e.	those	used	at	utility	scale	and	in	electric	vehicles)	are	not	available	
from	earlier	than	2010,	and	so	it	is	difficult	to	accurately	track	the	technology’s	experience	curve	in	its	
initial	years.	However,	we	can	infer	the	early	history	of	the	experience	curve	from	cell-level	cost	and	
production	data	in	consumer	electronics.17		

Battery	systems	include	other	costs	beyond	the	battery	pack	alone,	including	both	additional	equipment	
costs	(e.g.	control	systems)	and	soft	costs	(e.g.	site	preparation,	permitting	and	inspection,	and	
developer	returns),	but	it	is	not	clear	at	this	early	stage	which	costs	are	or	will	be	bundled	with	reported	
“pack	level”	figures.	Because	only	a	handful	of	grid-scale	battery	storage	facilities	have	been	constructed	
to	date,	data	for	these	costs	are	neither	available	nor	reliable	enough	to	be	meaningful	at	this	early	
stage	in	the	disruption.	In	addition,	these	costs	(unlike	battery	cells	and	packs	themselves)	have	not	yet	
benefited	from	scaling	and	are	likely	to	decline	very	sharply	from	their	present	levels	as	deployment	
rapidly	grows	to	the	gigawatt-hour	level	worldwide.	Pack-level	data	reported	by	mainstream	analysts	
differs	significantly	and	is	notably	higher	than	cost	figures	claimed	by	individual	industry	leaders	such	as	
Tesla,	and	we	have	found	that	neither	are	possible	to	accurately	verify.	Our	assessment	is	that	the	actual	
pack-level	cost	is	substantially	lower	than	currently	reported	by	mainstream	analysts	and	is	closer	to	
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what	Tesla	and	other	leaders	claim,	and	furthermore	that	additional	hard	and	soft	costs	will	be	markedly	
lower	than	is	currently	projected	by	other	mainstream	analysts	–	consistent	with	the	same	pattern	seen	
in	many	previous	disruptions.	Finally,	it	is	unclear	which	hard	and	soft	costs	will	be	bundled	with	
interconnection,	transmission,	and	distribution	infrastructure	costs	that	are	excluded	from	this	analysis	
(see	Omitted	Variables	&	Constraining	Assumptions	below).	For	all	of	these	reasons,	our	capital	cost	and	
system	electricity	cost	calculations	(see	below)	are	based	on	projections	of	pack-level	battery	costs	
alone.	

The	cost	of	battery	energy	storage	capacity	in	the	United	States	has	declined	at	an	average	rate	of	20.5%	
each	year	over	the	last	decade	and	is	likely	to	continue	to	do	so	over	the	next	decade.18,19	Our	analysis	
conservatively	assumes	that	battery	energy	storage	capacity	costs	will	continue	to	decline	over	the	
course	of	the	2020s	at	an	average	annual	rate	of	15%	(Figure	9).	

Figure	9:	Battery	Energy	Storage	Capacity	Cost	(2019	USD	per	kilowatt-hour	at	pack	level)	–	Logarithmic	Plot	

	

Source:	BNEF,	2017	&	2019.	RethinkX	projections	2020-2030.	

System	Electricity	Cost	(SEC)	
Instead	of	using	LCOE,	which	is	a	flawed	metric	whose	unit	of	analysis	is	only	meaningful	at	the	level	of	
individual	power	plants,	our	analysis	calculates	the	System	Electricity	Cost	(SEC)	per	kilowatt-hour	for	all	
centralized	power	generation	in	aggregate,	including	energy	storage,	by	averaging	all	costs	across	all	
kilowatt-hours	of	electricity	served	for	the	financial	life	of	the	system’s	assets.	(We	conservatively	
assume	the	financial	life	of	SWB	assets	is	20	years,	but	actual	operational	life	is	likely	to	be	much	longer).	
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SEC	is	a	useful	metric	because	it	allows	us	to	report	a	cost	of	electricity	produced	by	a	100%	SWEB	
system	on	a	per-kilowatt-hour	basis	that	can	be	meaningfully	compared	to	the	historical	LCOE	of	
conventional	generating	technologies.	

Parameter	Assumptions	
For	each	of	regional	case	studies,	we	identified	future	energy	mixes	that	comprise	sufficient	SWB	
capacities	to	ensure	fully	reliable	electricity	supply	year-round.	We	then	calculate	costs	given	the	
following	assumptions	about	the	relevant	operational	and	financial	parameters:	

- California	annual	electricity	demand	of	285	terawatt-hours	
- Texas	annual	electricity	demand	of	414	terawatt-hours	
- New	England	region	annual	electricity	demand	of	122	terawatt-hours	
- California	average	demand	hour	(for	battery	modeling)	of	32.5	gigawatts	
- Texas	average	demand	hour	(for	battery	modeling)	of	47.2	gigawatts	
- New	England	average	demand	hour	(for	battery	modeling)	of	13.9	gigawatts	
- Asset	financial	life	of	20	years	
- Debt-to-equity	ratio	of	60:40	
- Interest	rate	on	debt	of	3%	
- Internal	rate	of	return	to	equity	of	8%	
- Tax	rate	of	35%,	allowing	for	tax	benefits	from	depreciation	losses	
- Depreciation	over	5	years	following	MACRS	5-year	property	class	schedule	
- Fixed	operations	and	maintenance	costs	for	solar	PV	of	$5	per	kilowatt	
- Fixed	operations	and	maintenance	costs	for	wind	of	$40	per	kilowatt	
- Fixed	operations	and	maintenance	costs	for	batteries	of	$0.50	per	kilowatt-hour	
- Variable	operations	and	maintenance	costs	for	solar	PV	of	zero	
- Variable	operations	and	maintenance	costs	for	wind	of	zero	
- Variable	operations	and	maintenance	costs	for	batteries	of	zero	
- Operations	and	maintenance	cost	inflation	rate	of	2%	

Omitted	Variables	&	Constraining	Assumptions	
Our	analysis	does	not	include	the	cost	of	transmission	and	distribution	(T&D)	infrastructure,	as	these	
requirements	will	vary	dramatically	between	different	regions.	Our	limit	scenario	makes	a	number	of	
severely	constraining	assumptions	for	the	purpose	of	emphasizing	what	is	possible	for	100%	SWB	
systems.	The	bar	for	clean	energy	will	not	be	nearly	so	high	in	most	locations.	These	assumptions	
include:	

- No	electricity	imports	
- No	conventional	operating	reserve	
- No	other	renewables	
- No	distributed	generation	or	storage	
- No	impacts	from	electric	vehicles	
- No	demand	response,	load	shifting,	energy	arbitrage,	or	peak	shaving	
- No	technology	breakthroughs	
- No	subsidies,	carbon	taxes,	or	other	financial	innovations	



These	variables	are	all	deeply	interconnected,	and	one	cannot	be	meaningfully	considered	without	the	
others.	We	have	therefore	chosen	to	set	all	these	variables	aside	as	constants	in	order	to	keep	the	scope	
of	the	analysis	manageable	and	to	focus	on	what	is	possible	in	the	limit	for	100%	SWB	systems.	
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